skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Morin, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Morin, P; Suri, S (Ed.)
    We define simple variants of zip trees, called zip-zip trees, which provide several advantages over zip trees, including overcoming a bias that favors smaller keys over larger ones. We analyze zip-zip trees theoretically and empirically, showing, e.g., that the expected depth of a node in an n-node zip-zip tree is at most 1.3863log n -1 + o(1), which matches the expected depth of treaps and binary search trees built by uniformly random insertions. Unlike these other data structures, however, zip-zip trees achieve their bounds using only O(loglog n) bits of metadata per node, w.h.p., as compared to the O(log n) bits per node required by treaps. In fact, we even describe a “just-in-time” zip-zip tree variant, which needs just an expected O(1) number of bits of metadata per node. Moreover, we can define zip-zip trees to be strongly history independent, whereas treaps are generally only weakly history independent. We also introduce biased zip-zip trees, which have an explicit bias based on key weights, so the expected depth of a key, k, with weight, w, is O(log W/w), where W is the weight of all keys in the weighted zip-zip tree. Finally, we show that one can easily make zip-zip trees partially persistent with only O(n) space overhead w.h.p. 
    more » « less
  2. Morin, P; Suri, S (Ed.)
    Taking length into consideration while comparing 1D shapes is a challenging task. In particular, matching equal-length portions of such shapes regardless of their combinatorial features, and only based on proximity, is often required in biomedical and geospatial applications. In this work, we define the length-sensitive partial Fréchet similarity (LSFS) between curves (or graphs), which maximizes the length of matched portions that are close to each other and of equal length. We present an exact polynomial-time algorithm to compute LSFS between curves under and . For geometric graphs, we show that the decision problem is NP-hard even if one of the graphs consists of one edge. 
    more » « less
  3. Morin, P; Suri, S (Ed.)
    We provide several algorithms for sorting an array of n comparable distinct elements subject to probabilistic comparison errors in external memory. In this model, which has been extensively studied in internal-memory settings, the comparison of two elements returns the wrong answer according to a fixed probability, p<1/2,, and otherwise returns the correct answer. The dislocation of an element is the distance between its position in a given (current or output) array and its position in a sorted array. There are various existing algorithms that can be utilized for sorting or near-sorting elements subject to probabilistic comparison errors, but these algorithms do not translate into efficient external-memory algorithms, because they all make heavy use of noisy binary searching. In this paper, we provide new efficient methods that are in the external-memory model for sorting with comparison errors. Our algorithms achieve an optimal number of I/Os, in both cache-aware and cache-oblivious settings. 
    more » « less